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Abstract. The similarity form of the solution of the linear homogeneous equation for
fragmentation with volume change is given. The solution shows the time evolution of the
particle-volume distribution when a particle splits into a polynomial distribution of fragment
volumes. The limits for small and large values of the similarity variable are derived, the long-
time limit for all values of the similarity variable is given and the characteristic time to approach
the limit is identified. The solution shows the effect of volume change on the particle-volume
distribution and on the time dependence of the moments of the distribution.

1. Introduction

A continuous linear equation called the fragmentation equation was introduced by Fillipov
[1] as a model for the fragmentation (splitting) of particles. Since then the solutions of the
equation have been studied by many authors where [1–15] are relevant to the analysis given
here. The equation determines the evolution in time of the volume distribution of particles
as fragmentation into smaller particles proceeds. The assumptions for the theory here and
in the above references are: (i) the particles are characterized by only one variable such
as particle mass or a characteristic dimension of the particle, which here we callparticle
volume; (ii) the fragmentation of the particles does not require interaction with other particles
of the same kind and in this sense is spontaneous. Consequently the fragmentation equation
is linear; (iii) the discrete nature of the particles is ignored by taking the distribution of
the particles to be a function of a continuous particle-volume variablex, wherex > 0
and thus there is no small particle fragmentation cut-off; (iv) the probability of a particle
fragmenting is assumed to be independent of its history and proportional toxα where
α > 0 is a real parameter (the assumptionα > 0 is necessary for the existence of a
similarity solution and excludes the shattering kind of fragmentation); (v) changes in the
particle-volume distribution caused by spatial gradients in the concentration of particles are
assumed negligible, so spatial coordinates are absent from the theory. Later we will make a
further assumption for the function form of the probability for the number and distribution
of fragment volumes when a particle splits into fragments.

We refer to Edwardset al [6] and Huanget al [10] for a discussion of physical
fragmentation processes in combustion where particle volume (or mass) can change. For
further applications we refer to Ziff and McGrady [4] on the fragmentation of polymers
and to Redner [9] for a general discussion of fragmentation processes. The emphasis here
is on the mathematics of constructing an exact solution for fragmentation with volume
change where we point out properties of the solution that should be of interest for physical
applications.
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The fragmentation equation provides an accounting in time of the number and volumes
of the particles as they fragment into smaller particles. The equation assumed here and in
[1–15] is

∂

∂t
n(x, t) = −c̃αxαn(x, t)+ c̃α

∫ ∞
x

yα−1b(x/y)n(y, t)dy. (1.1)

The notation and the description of the terms are the same as in [15] but for convenience
we repeat them here. In (1.1)x is the volume of a particle with the dimension of length
cubed,α is the degree of homogeneity inx, t is time in seconds andn(x, t) is the uniform
spatial concentration of particles per unit particle volume with dimensionx−2. Throughout
the analysisα > 0, which is a necessary condition for the existence of a similarity solution.
The first term on the right-hand side of (1.1) is the rate at which the concentration of
particles of volumex decreases by fragmentation and the second term is the rate at which
the concentration of particles of volumex increases due to the fragmentation of particles
with volumes larger thanx. The rate constant̃cα has the dimensions ofx−αt−1. The
daughter-fragment distribution,b(x/y), determines the number and distribution of fragment
volumes when a particle splits into fragments. We assume thatb(x/y) is a function of the
ratio x/y and thus is homogeneous of degree zero. The fragmentation terms are, therefore,
homogeneous of degreeα which is necessary for the existence of solutions of the similarity
form. If

∫ 1
0 rb(r) dr = 1 then the first moment of the particle distribution, which is the

volume (or mass),is conservedin the fragmentation process. However, if
∫ 1

0 rb(r) dr 6= 1
then the volumeis not conserved. Fillipov [1], Edwardset al [6], Cai et al [7] and Huang
et al [10] have allowed this generality in the theory. The daughter distribution determines
the number of fragments per fragmentation, which we callfragment numberand is given
by Ñ = ∫ 1

0 b(r) dr. The fragment number does not change during the evolution of the
distribution so as the particles become smaller they continue to split into the same number
and the same distribution of fragments.

Edwardset al [6], Cai et al [7] and Huanget al [10] characterize the change in
volume that occurs in the fragmentation process asdiscrete. The same authors also consider
another kind of change in particle volume caused by a surface effect, such as evaporation
or condensation, that changes the particle volume without changing the number of particles.
Here we consider volume change by fragmentation anddo not consider volume change by
surface effects.

In [15] a similarity solution forvolume-conserving fragmentationfor a polynomial
daughter distribution has been given. We show here that the solution given in [15]
generalizes in a simple way to give the solution forfragmentation with volume change.
Unfortunately the similarity solution is not the general solution of the initial value problem.
However, Kolmogorov [16] has shown in a special case and Fillipov [1] has shown for
conditions satisfied here (except for volume conservation) that for long times the general
solution converges to a limit distribution. The theorem should also hold for fragmentation
with volume change. The limit distribution is determined here by taking the long-time
limit of the similarity solution (called a stationary solution by Fillipov) and thus, after a
sufficiently long time, other solutions with initial conditions different than for the similarity
solution should approach the limit of the similarity solution.

We recall that in the theory of volume-conservingcoagulation the Friedlander ansatz
[17] assumes that the solution for the particle-volume distribution has the similarity form

n(x, t) = N(t)φ(z)

V
z = N(t)x

V
(1.2)
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whereφ(z) is called the reduced distribution,N(t) is the total number of particles andV is
the conserved total particle volume. The similarity variablez is the ratio of the volumex
of an individual particle to the instantaneous mean particle volumev(t) = V/N(t), where
N(t) is the zeroth moment andV is the first moment of the distribution. Thekth moment
of the distribution is defined by

Mk =
∫ ∞

0
xkn(x, t)dx (1.3)

with k a real number. As shown, for example, in [17], substitution of the Friedlander
similarity form into the volume-conservingcoagulation equation separates the partial
derivative equation into an ordinary equation in time for the momentsMk and an ordinary
equation in the similarity variable for the reduced distributionφ(z). This provides the
mathematical advantage of working with two ordinary equations rather than a partial
differential equation. Likewise, for volume-conservingfragmentation, substitution of the
Friedlander form into (1.1) separates the equation in essentially the same way as for
coagulation. The Friedlander ansatz separates variables for both thenonlinear coagulation
equationand thelinear fragmentation equationbecause both equations are homogeneous in
the particle volume and are first order in the time derivative and thus have the same scaling
invariance.

To obtain the similarity form of solution for fragmentation whichdoes not conserve
volume one needs to generalize the Friedlander similarity form (1.2). We obtain the
generalization by following closely the analysis of the scaling invariance given in [15].
Then, as with volume-conserving fragmentation, substitution of the generalized Friedlander
form into the fragmentation equation (1.1) separates the equation into ordinary equations for
the moments and the reduced distribution. We then proceed with the solution of the moment
equation and the reduced equation by the same steps taken in [15]. The solution of the
reduced equation was obtained in [15] by the Mellin transformation used earlier by Ziff and
McGrady [4], Cheng and Redner [5, 8] and Ziff [11]. The solutionn(x, t) in the form given
by (1.2) for volume-conserving fragmentation was found to be proportional to a Meijer
G-function which may be expressed as a linear combination of generalized hypergeometric
functions. We show here that the similarity solution for fragmentation with volume change
is a simple generalization of the solution for volume-conserving fragmentation. The solution
for small z is expressed as a sum of generalized hypergeometric series in powers ofzα.
The continuation of the small-z solution to large values ofz is anasymptotically converging
series in powers ofz−α.

The small- and large-z limits of the solution are shown for all times and the long-time
limit is shown for all z. We discuss the change of the shape of the distribution as the
fragmentation proceeds and identify the characteristic time to reach the limit distribution
and the characteristic times to change the moments of the distribution. Also, we give two
simple examples of the similarity solution which illustrate how the allowed numerical ranges
of the fragmentation parameters are determined and show in a simple setting the small- and
large-z limits and the long-time behaviour of the solution.

Finally, in the summary and discussion section we collect and comment on the results
of the analysis that seem most significant. In the appendices we give a derivation of the
generalization of the Friedlander similarity form for fragmentation with volume change and
we show some of the details of the special function analysis.
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2. The moment equation when there is volume change

We first consider the moments of the distribution in a general way that does not involve a
Friedlander ansatz or a similarity solution. Taking moments (the Mellin transform) of (1.1)
we obtain

dMk(t)

dt
= −c̃α

(
1−

∫ 1

0
rkb(r) dr

)
Mk+α(t). (2.1)

We suppose that the daughter distribution is such that there is a positive valuek = λ for
which ∫ 1

0
rλb(r) dr = 1. (2.2)

If (2.2) is satisfied it follows from (2.1) that the momentMλ is constant. This is an important
assumption that will be satisfied by the functionb(r) that we consider later. As a simple
example of (2.2) letb(r) = b0r

γ whereb0 andγ are real numbers. Then,∫ 1

0
rλb(r) dr = b0/(λ+ γ + 1) = 1

and solving forλ we haveλ = b0 − γ − 1. If b0 = γ + 2 thenλ = 1 and volume is
conserved. The daughter distributionb(r) = b0r

γ with b0 = γ + 2 has been considered
in the papers [1–15]. However, ifb0 6= γ + 2 thenλ 6= 1 and volume is not conserved
but the momentMλ is conserved, which is a generalization that has been considered in
[1, 6, 7, 10, 14]. We suppose for a generalb(r) that (2.2) is satisfied and thus the moment
Mλ is constant. Since the coefficient ofMk+α in the moment equation vanishes fork = λ,
we may write the coefficient in (2.1) in the factored form

dMk(t)

dt
= −c̃α(k − λ)AkMk+α(t) (2.3)

whereAk is a function ofk defined by

(k − λ)Ak = 1−
∫ 1

0
rkb(r) dr. (2.4)

We impose the additional restriction on the daughter-fragment distribution that it is such
thatAk > 0 for k > λ− 1.

Since the particle distributionn(x, t) is non-negative it follows that the momentsMk

defined by (1.3) are positive. Thus, by inspection of (2.3), we see that the momentsk < λ

increase and the momentsk > λ decrease in time. In particular, fork = 0 andk = 1 we
have

dN(t)

dt
= c̃α(Ñ − 1)Mα(t)

dV (t)

dt
= −c̃α(1− B)M1+α(t) (2.5)

whereN(t) is the total number of particles,V (t) is the total volume of particles and

Ñ =
∫ 1

0
b(r) dr B =

∫ 1

0
rb(r) dr. (2.6)

It follows from (2.5) thatÑ is the number of fragments per fragmentation and that ifB = 1
the volume of particles is conserved in the fragmentation process, as was asserted in the
introduction.
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3. The generalization of the Friedlander similarity form and the similarity solution of
the moment equation

The similarity ansatz given by equation (1.2) was first applied in volume-conserving
coagulation theory by Friedlander [17] and was first applied in volume-conserving
fragmentationtheory by Peterson [3]. Since then the similarity form of the distribution
or a limiting form of it have been assumed in a number of studies of the fragmentation
equation. In [15], rather than introduce the similarity solution as an ansatz it was deduced
as a consequence of the particle volume and time scaling invariance of the fragmentation
equation. Following closely the derivation given in [15], where the volume is constant, we
have derived a generalization of the Freidlander function form when a momentMλ, λ 6= 1,
instead of the volumeV = M1 is conserved. We show in appendix A that the generalization
is

n(x, t) = Mλ+1
λ−1(t)φ(z)

Mλ
λ

z = Mλ−1(t)x

Mλ

(3.1)

where the upper indices are powers of the moments and the lower indices identify the
moment. By comparing (3.1) with the volume-conserving similarity form (1.2) we can
understand this combination of variables without going through the derivation. First we
see that forλ → 1 we recover the Friedlander form. Then we see that in the similarity
variable (still calledz) the volumeV has been replaced by the conserved momentMλ. In
the numerator the particle numberN(t) = M0(t) has been replaced by the momentMλ−1(t),
with the index shifted by one from the conserved moment to make the similarity variable
dimensionless. Likewise for the time-dependent multiplicative factor, the volume in the
denominator has been replaced by the conserved momentMλ and the particle numberN(t)
in the numerator has been replaced byMλ−1(t). Then the powers are chosen so thatn(x, t)

has the correct dimensionx−2. Theλ-moment of (3.1) is∫ ∞
0
xλn(x, t)dx =

∫ ∞
0
xλ
Mλ+1
λ−1(t)φ(z)

Mλ
λ

dx = Mλ

∫ ∞
0
zλφ(z) dz

which confirms that the momentMλ is identically constant for a solution of the form (3.1)
and incidentally implies the normalization

∫∞
0 zλφ(z) dz = 1. We say that a solution is a

similarity solution if it has the form (3.1) and satisfies the fragmentation equation (1.1) for
t > 0, where the momentMλ−1 and all higher moments are finite.

We first derive the similarity solution of the moment equation and then go on to derive
the solution for the reduced distributionφ(z). To derive the moment solution we substitute
the general similarity form (3.1) into the definition of the moments (1.3) and obtain

Mk(t) = µk M
k+1−λ
λ

Mk−λ
λ−1(t)

(3.2)

where

µk =
∫ ∞

0
zkφ(z) dz (3.3)

are thereduced moments. In particular, fork = λ we haveMλ = µλMλ and fork = λ− 1
we haveMλ−1 = µλ−1Mλ−1. Thus, for consistency we must haveµλ−1 = 1 andµλ = 1.
These are the normalization conditions that replaceµ0 = 1 andµ1 = 1 that are implicit in
the volume-conserving Friedlander ansatz.
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Substitution of (3.1) into the moment equation (2.3) gives

µkM
α−1
λ−1 (t)

dMλ−1(t)

dt
= c̃αAkµk+αMα

λ . (3.4)

Taking k = λ− 1 in (3.4) and usingµλ−1 = 1 we obtain

Mα−1
λ−1 (t)

dMλ−1(t)

dt
= c̃αAλ−1µλ−1+αMα

λ . (3.5)

One can check the units of the moment equations by recalling that dim(Mk) = xk−1,
dim(c̃α) = x−αt−1 and all other quantities are dimensionless.

The integral of (3.5) is

Mλ−1(t) = Mλ−1(0)(1+ βας)1/α (3.6)

where

βα = αµα+λ−1Aλ−1 (3.7)

is a significant dimensionless parameter andς = c̃αv
α
λ t is a dimensionless time. The

parametervλ = Mλ/Mλ−1(0) is the initial mean value ofxλ and is akin to the initial mean
particle volumev1 = V (0)/N(0) and reduces to it whenλ→ 1. Substitution of (3.6) into
(3.2) gives the solution for all the moments as

Mk(t) = Mk(0)(1+ βας)−(k−λ)/α (3.8)

where

Mk(0) = µkMλ−1(0)v
k+1−λ
λ (3.9)

are the initial values of the moments of the similarity solution. In particular, we see from
(3.8) that the number and volume are given by

N(t) = N(0)(1+ βας)λ/α V (t) = V (0)(1+ βας)−(1−λ)/α. (3.10)

By inspection of (3.10) it is evident that a decrease in volume (λ < 1) slows the growth
of the particle number andvice versaif the volume would be increasing. As is evident
from (3.8), the exponent for ratios of moments is independent ofλ. For instance for the
instantaneous mean particle volumev1(t) and thevλ(t) mean value we have

v1(t) = V (t)

N(t)
= v1(1+ βας)−1/α vλ(t) = Mλ

Mλ−1(t)
= vλ(1+ βας)−1/α. (3.11)

To emphasize the generality of the moment solution (3.8) we point out that in the
derivation we did not need to assume a specific function form for the daughter distribution.
Nor did we need to know specifically the reduced distributionφ(z), only that it exists and
its moments (3.3) are finite fork > λ − 1. However, the allowed numerical ranges for
λ and the other fragmentation parameters depend on the daughter distribution and will be
determined in the construction of the solution for the reduced distribution.

3.1. The reduced moment equation and the reduced moments for the polynomial daughter
distribution

By comparing (3.4) and (3.5) we obtain the fundamental recursion relation

µk+α = βα

αAk
µk (3.12)
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where we usedβα = αµλ−1+αAλ−1. Starting withk = λ − 1 and iterating (3.12) in steps
of α we obtain the solution of (3.12) which is

µλ−1+nα = βnα

αnAλ−1Aλ−1+α . . . Aλ−1+(n−1)α
. (3.13)

As in the analysis in [15] for volume-conserving fragmentation we assume the
polynomial form of the daughter-fragment distribution

b(r) = rγ (b0+ b1r + · · · + bprp) (3.14)

wherep is a positive integer andγ and the coefficientsb0, b1, . . . , bp are real. Substitution
into (2.4) and integration gives

(k − λ)Ak = 1−
∫ 1

0
rkb(r) dr

= 1− b0

k + γ + 1
− b1

k + γ + 2
− · · · − bp

k + γ + p + 1
. (3.15)

There arep + 1 zeros of(k − λ)Ak. One of them,λ, has been assumed to be positive
and we now suppose that the otherp zeros are real and negative. These conditions can be
satisfied by proper choice of theb coefficients. Thus, we may writeAk in the factored form

Ak = (k + λ1)(k + λ2) . . . (k + λp)
(k + γ + 1)(k + γ + 2) . . . (k + γ + p + 1)

(3.16)

where we suppose thatλ1, λ2, . . . , λp are real, positive numbers and thus
−λ1,−λ2, . . . ,−λp are the zeros ofAk. From (3.15) we see that the positive zero and
the negative zeros are solutions of

b0

k + γ + 1
− b1

k + γ + 2
− · · · − bp

k + γ + 1+ p = 1. (3.17)

We show in appendix B that forAk given by (3.16) the solution (3.13) for theµ-moments
is given by

µλ−1+k = Dp(α, γ, λ)βk[0((k + γ + λ)/α)0((k + γ + λ+ 1)/α) . . .

. . . 0((k + γ + λ+ p)/α)]
×[0((k + λ1+ λ− 1)/α)0((k + λ2+ λ− 1)/α) . . .

. . . 0((k + λp + λ− 1)/α)]−1 (3.18)

where0 is the gamma function and

Dp(α, γ, λ) = 0((λ1+ λ− 1)/α)0((λ2+ λ− 1)/α) . . . 0((λp + λ− 1)/α)

0((γ + λ)/α)0((γ + λ+ 1)/α) . . . 0((γ + λ+ p)/α) (3.19)

is independent ofk. For brevity we will refer toλ1, λ2, . . . , λp as zeros ofAk even though
−λ1,−λ2, . . . ,−λp are the values for whichAk = 0. Recalling that we have normalized
with µλ = 1, it follows from (3.18) and (3.19) that

β = 0((γ + λ)/α)0((λ+ λ1)/α)0((λ+ λ2)/α) . . . ((λ+ λp)/α)
0((γ + λ+ 1+ p)/α)0((λ1+ λ− 1)/α)0((λ2+ λ− 1)/α) . . . 0((λp + λ− 1)/α)

.

(3.20)

We see that forγ + λ = 0, because of the singularity of0((γ + λ)/α), that β = ∞. To
avoid this singularity and to insure thatβ <∞ we impose the constraintγ + λ > 0. The
inverse Mellin transform of (3.18) gives the solution for the reduced distributionφ as we
now show.
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4. The solution for the reduced distribution φ(z)

The inverse Mellin transform is given by

φ(z) = 1

2π i

∫
Br
z−(k+1)µk dk (4.1)

where Br is the Bromwich path in the complexk-plane (fromk = −i∞ to k = +i∞ to the
right of the singularities ofµk) andµk is given by (3.18) withk continued to the Bromwich
path.

Substitution of (3.18) into the inversion integral (4.1) and making a change of the
variable of integration gives

φ(η) = Dp(α, γ, λ) α
βλ
ηγ/α

× 1

2π i

∫ σ+i∞

σ−i∞
η−k[0(k)0(k + 1/α) . . . 0(k + p/α)]

×[0(k + (λ1− γ − 1)/α)0(k + (λ2− γ − 1)/α) . . .

. . . (k + (λp − γ − 1)/α)]−1 dk (4.2)

whereσ > 0, η = zα/βα is the scaled similarity variable andφ(η) = φ(z). Fortunately, the
inversion integral in (4.2) is a particular case of a known special function called a Meijer
G-function. An analysis of the generalG-function and its properties are given by Luke
[18]. There one finds the definition of our particularG-function as

G
p+1,0
p,p+1

(
λp − γ − 1

α
; 0, p

α
; η
)

= 1

2π i

∫ σ+i∞

σ−i∞
η−k[0(k)0(k + 1/α) . . . 0(k + p/α)]

×[0(k + (λ1− γ − 1)/α)0(k + (λ2− γ − 1)/α) . . .

. . . (k + (λp − γ − 1)/α)]−1 dk (4.3)

where we have used the short notation

G
p+1,0
p,p+1

(
λp − γ − 1

α
; 0, p

α
; η
)

= Gp+1,0
p,p+1

(
λ1− γ − 1

α
,
λ2− γ − 1

α
, . . . ,

λp − γ − 1

α
; 0, 1

α
,

2

α
, . . .

p

α
; η
)
.

The lower-inner indexp is the number of gamma-function factors in the denominator and
the first p arguments of theG-function show the arguments of the denominator factors.
The upper-inner indexp+1 is the number of gamma-function factors in the numerator and
the nextp + 1 arguments ofG, including the zero, show the positions of the poles of the
numerator factors. The upper-outer index being zero means that there are no more gamma
function factors in the numerator and the difference of the upper-inner and lower-outer
indices being zero means that there are no other gamma-function factors in the denominator.
Forp = 0 theG-function (4.3) is the exponential function, forp = 1 it is a sum of two1F1

confluent hypergeometric series and forp > 1 it is a linear combination ofpFp generalized
confluent hypergeometric series, where

pFp(a1, a2, . . . , ap; c1, , . . . , cp; η) =
n=∞∑
n=0

(a1)n(a2)n . . . (ap)n

(c1)n(c2)n . . . (cp)n

ηn

n!
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and (a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer factorial, which is related to the
gamma function by0(a + n) = 0(a)(a)n.

With (4.3), we write (4.2) as

φ(η) = Dp(α, γ, λ) α
βλ
ηγ/αG

p+1,0
p,p+1

(
λp − γ − 1

α
; 0, p

α
; η
)
. (4.4)

The solution depends onλ in the coefficient of theG-function and depends onβ in the
scaled similarity variable in the argument of theG-function which depends onλ. The
solution (4.4) is the same as the solution for volume-conserving fragmentation given in [15]
except that it contains the parameterλ, which now need not be unity and the parameters
λ1, λ2, . . . , λp (the zeros ofAk) in the argument ofG are shifted from what they would
be for volume-conserving fragmentation. The solution (4.4) reduces to the solution for
volume-conserving fragmentation if everywhere in the solution and in the determination of
the zeros by (3.17) one takesλ = 1.

There are other representations of theG-function besides the one given by the inversion
integral (4.3). Two alternative representations have been derived in [15] which, for
convenience, we show again in appendix C. One of these givesG

p+1,0
p,p+1 as a linear

combination ofpFp generalized hypergeometric functions from which one obtains the small-
η limit. The other is a real multiple integral representation that shows the constraints on
the zeros ofAk and is used to derive the large-η asymptotic limit of the solution. We will
show the details of both of these representations for thep = 1 case.

4.1. Constraints on the parameters

One sees by inspection of the integral representation given in appendix C by equation (C.4)
that a necessary condition for the existence of the integrals is

λ1 > γ + 2, λ2 > γ + 3, . . . , λp > γ + 1+ p. (4.5)

It follows from (3.15) and (3.16) withk = 0 that the fragment number is given by

Ñ =
∫ 1

0
b(r)dr = 1+ λA0 = 1+ λλ1λ2 . . . λp

(γ + 1)(γ + 2) . . . (γ + 1+ p) . (4.6)

If one wants two or finitely more fragments per fragmentation then we have the further
constraint

λλ1λ2 . . . λp

(γ + 1)(γ + 2) . . . (γ + 1+ p) > 1 γ > −1. (4.7)

As we noted above, for finiteβ it is necessary that

γ + λ > 0. (4.8)

We impose the constraints (4.5), (4.7) and (4.8) on the fragmentation parameters.

4.2. The reduced equation forφ

One of the curious features of the similarity solution is that by applying the Mellin
transformation and its inversion we have been able to construct the solution without ever
considering the ordinary differential equation satisfied by the reduced distributionφ(z). As
noted in the introduction, the equation satisfied byφ(z) is obtained by substituting the
similarity form (3.1) into the fragmentation equation (1.1) and separating the variablesz
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and t . Carrying out this substitution one confirms that the similarity variable and the time
separate and yields thereduced equation

z
dφ(z)

dz
+ (1+ λ)φ(z) = α

βα

[
− zαφ(z)+

∫ ∞
z

b

(
z

w

)
wα−1φ(w) dw

]
(4.9)

whereβα now appears as a separation parameter. When the proper boundary conditions are
enforced the solution of (4.9) should be (4.4). Thus, another approach to constructing the
solutionφ(z) (or equivalentlyφ(η)) would be to try to solve (4.9) as a linear combination
of pFp series. For consistency one should obtain the same solution that was obtained by
the Mellin transformation. However, we have not tried to construct the solution in this
way, rather, as a simple check for consistency, we have taken moments of (4.9) and find
again the recursion formula (3.12) forµk, as we should. In appendix D we show that the
recursion equation (3.12) forµk is obtained by taking moments of (4.9).

5. The small- and large-η behaviour for φ(η) and the long-time limit for n(x, t)

5.1. The small-η limit for φ(η)

The power series representation ofGp+1,0
p,p+1(η) at η = 0 for a general polynomialb(r) is

given in appendix C where we show the leading terms of the series. From (C.1) and (4.4)
we obtain the limit

lim
n→0

φ(η) = C0η
γ/α (5.1)

whereC0 is a constant that is determined by (3.19), (4.4) and the leading term in (C.1).
Thus we have the general result that the small-η power-law behaviour is determined byrγ

(the leading term in the daughter-fragment distribution) and does not depend explicitly on
the coefficients of the polynomial factor inb(r). However, the values ofγ are constrained
by (4.5), (4.7) and (4.8) and in this sense depend on the other fragmentation parameters in
the polynomial factor. We will see that by allowing a larger range forγ that the polynomial
factor can have a significant effect on the small-η behaviour.

5.2. The large-η asymptotic limit forφ(η)

An integral representation for theGp+1,0
p,p+1(η) was derived in [15] forλ = 1 and with only a

change in notation is given forλ 6= 1 by equation (C.4) in appendix C. Following the same
steps given in [15], the limit for large-η obtained from the integral representation is

lim
η→∞φ(η) ∼ C∞

α

βλ
η(γ+3)/α exp(−η) (5.2)

whereC∞ is a constant,

3 = −
p∑
j=1

(λj − γ − 1− j) (5.3)

and the lower bounds onλj , j = 1, 2, . . . , p, are given by (4.5). It follows from
(5.3) and (4.5) that3 < 0 and hence the limit (5.2) is bounded from above by
constant× ηγ/α exp(−η).

According to Luke [18, section 5.10, p 189], except forp = 0, for whichG1,0
0,1 is the

exponential function, the large-η expansion of theG-function is an asymptotic expansion,
as we have indicated by the notation. Thus, the limit (5.2) is the limit of an asymptotically
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converging series inη−1. In appendix C for the special casep = 1 we confirm the
asymptotic nature of the expansion. There we show that

G
2,0
1,2

(
λ1− γ − 1

α
; 0, 1

α
; η
)

∼ η−(λ1−γ−2)/α exp(−η)2F0

(
λ1− γ − 2

α
,
λ1− γ − 1

α
; ;−η−1

)
(5.4)

where

2F0

(
λ1− γ − 2

α
,
λ1− γ − 1

α
; ;−η−1

)
=

n=∞∑
n=0

(λ1− γ − 2)n(λ1− γ − 1)n
n!

(−η)−η. (5.5)

Because of the two Pochhammer factorials in the numerator it is evident that the series
diverges for allη, but it converges asymptotically.

5.3. The long-time limit of the similarity solution for allη

We recall that the full similarity solution is given by (3.1). Substitution of the moment
solution (3.6) into (3.1) gives

n(x, t) = Mλ

vλλ
(1+ βας)(λ+1)/αφ(η) (5.6)

where

η = zα

βα
= 1

βα

(
Mλ−1(t)

Mλ

)α
xα = 1

βαvαλ
(1+ βας)xα. (5.7)

Thus, except for the dependence ofvλ andβ onλ, the similarity variables for fragmentation
with constant volume and fragmentation with volume change are the same functions ofς .
For λ→ 1, (5.7) reduces to the Friedlander similarity variable.

In the limit ς = c̃αvαλ t →∞ we have

lim
ς→∞ η =

ςxα

vαλ
= c̃αxαt

lim
ς→∞

Mλ+1
λ−1(t)

Mλ
λ

= Mλ

vλ+1
λ

lim
ς→∞(1+ β

ας)(1+λ)/α = Mλ

vλ+1
λ

β(1+λ)ς(1+λ)/α (5.8)

where we see thatβ andvλ cancel out of the scaled similarity variable. To denote the limit
of the similarity variable we use the notationη∞ = limς→∞ η = c̃αx

αt , which is justς
with the initial average ‘volume’vλ replaced by the arbitrary particle volumex. Thus, with
(5.6) and (5.8) we obtain the limit

lim
ς→∞ n(x, t) = Cς

(λ+1)/αφ(η∞) ς = c̃αvαλ t η∞ = c̃αxαt (5.9)

whereC is a constant. Thus, ifβας � 1 and (αβας)/(λ + 1) � 1 then (5.6) may be
represented by (5.9). Usually the long-time behaviour is emphasized and then the parameter
β does not appear in the analysis. However, from (5.6) and (5.7) we see thatβ is significant
for setting the time scale of the fragmentation process. For example, because of the pole
at γ + λ = 0 in the gamma function in the numerator in (3.20), ifγ + λ → 0 then
β → ∞ and consequently in a very short time the distribution approaches the long-time
limit. The parametervλ is usually not shown; however, we show it here because it affects
the fragmentation time scale.

The mean valuevλ appearing in solution (5.6) is an initial condition that is independent
of the fragmentation physics and may be chosen arbitrarily. Thus, the similarity solution
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is actually a one-parameter family of solutions labelled with the parametervλ. On account
of the linearity of the equation one can form additional solutions by the superposition of
similarity solutions with different values ofvλ. However, for long times, as we have seen
in (5.9), vλ cancels out of the solution and thus, up to a constant multiplicative factor,
solutions with differentvλ tend to the same limit. Therefore, different linear combinations
of similarity solutions tend to the same limit. This is an example of Fillipov’s theorem [1],
which states that solutions of the fragmentation equation with different initial conditions
tend to the same limit distribution.

5.4. The long-time, small-η limit and the long-time, large-η limit

When considered as a function ofη inspection of the similarity form shows that one may
think of (Mλ/v

λ+1
λ )(1+ βας)(λ+1)/α as the amplitude of the distribution. The amplitude of

the distribution changes in time but the shape of the distribution as a function ofη does not
change and hence the name similarity or self-similar. One can also consider the distribution
as a function ofx, or better as a function of(x/vλ)α, with ς a parameter. Then, as a
function of (x/vλ)α with increasingς the shape of the distribution changes by becoming
narrower. Asς increases the amplitude ofn(x, t) increases (because of the increase in the
number of particles) and the distributionφ as a function of(x/vλ)α becomes narrower in
such a way that the momentMλ remains constant. As the distribution becomes narrower
there is still a front and a tail of the distribution where the same definitions of front (η � 1)
and tail (η � 1) continue to apply. (If one wants to be more precise then one can inspect
the leading terms in the smallη expansion and the largeη asymptotic expansion.) In the
limit ς →∞ the amplitude of the distribution tends to infinity withMλ constant. Thus we
may consider the functionst (x) = xλn(x, t) as a sequence of functions ofx with t (or ς )
a parameter. Ast increases the functions ofx become narrower and increase in amplitude
while the integral overx remains constant and fort →∞ the sequencest (x) is localized
in the positive neighbourhood ofx = 0. This behaviour is like aδ-sequence [19], where
the limit ast →∞ is the Dirac delta-functionδ(x). From a physical point of view this is
a natural limit for a system of particles that continues to fragment with no smallest particle
cut-off in the fragmentation process. Fort → ∞, the momentsMk, k > λ vanish, the
momentsMk, k < λ diverge and for the special valuek = λ, the moment remains constant,
which is the behaviour of the moments of a Dirac delta-function.

Another simple feature of the fragmentation kinetics is shown by (3.11), where for
βας/α � 1 we see that the instantaneous mean volume of the distribution approaches zero
according to the power lawv1(t) = v1βς

−1/α, wherev1 is the initial mean volume. We
see that this behaviour is independent of all fragmentation parameters except the degree
of homogeneityα, i.e. independent of parameters that characterize the daughter-fragment
distribution. This behaviour is well known and has been deduced from the scale invariance
of volume-conserving fragmentation.

If there is interest in the dependence of the distribution separately onx andς for long
times, one can make this separation in the limits (5.1), (5.2) and (5.6). Then for largeς

and smallη∞ we have

lim
ς→∞,η∞→0

n(x, t) = C ′0ς(λ+1+γ )/α(x/vλ)γ (5.10)

whereC ′0 is a constant. For largeς and largeη∞ we have

lim
ς→∞,η∞→∞

n(x, t) ∼ C ′∞ς(λ+1+γ+3)/α
(
x

vλ

)γ+3
exp

(
−ςx

α

vαλ

)
(5.11)
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whereC ′∞ is a constant.
We now give examples where we will see in a simple setting how the solutions depend

on the fragmentation parametersγ, λ andλ1 and we will show the allowed numerical range
of γ, λ andλ1.

6. Examples for p= 0 and p= 1

The simplest cases are the power law (p = 0) and the linear (p = 1) daughter distributions.

6.1. Power law,p = 0, b(r) = b0r
γ

According to (4.3) withp = 0 theG-function is given by

G
1,0
0,1(0; 0; η) =

1

2π i

∫
Br
η−k0(k) dk = exp(−η). (6.1)

With (4.4) and (6.1) we have the reduced distribution

φ(η) = α

0((γ + λ)/α)βλ η
γ/α exp(−η) (6.2)

and with (3.1) the similarity solution is

n(x, t) = Mλ

vλ+1
λ

(1+ βας)(λ+1)/αφ(η). (6.3)

For p = 0 we have

b0 = λ+ γ + 1 Ñ = 1+ λ

γ + 1
β = 0((γ + λ)/α)

0((γ + λ+ 1)/α)
(6.4)

where the parameters satisfy the constraints

γ > −1 γ + λ > 0
λ

γ + λ > 1. (6.5)

For (λ + 1)βας/α � 1, βας � 1 we obtain the long-time limit from (6.2) and (5.8).
If λ = 1 then−1 < γ 6 0, Ñ and β are finite, there are two or more fragments per
fragmentation and from (6.2) and (6.3) we recover the volume-conserving solution given
by Peterson [3].

Equation (3.8) gives the solution for the moments for allp. By inspection of (3.8) we
see that the characteristic real time for the change in the moments is

t∗k =
α

(k − λ)βαc̃αvαλ
where the moments withk close toλ of course have large time constants. Or, ifγ → −λ
the parameterβ becomes large, the time constant becomes small and there is a very rapid
change of the moments except fork very close toλ. As we see the characteristic time is
determined by the allowed numerical values ofα, γ, λ, the rate constant̃cα and the initial
mean momentvλ. The mean momentvλ is an initial condition but the parametersα, γ, λ
and c̃α can only be obtained by an analysis of the physics of the fragmentation process,
or by fitting to measurements on the evolution of the distribution or measurements of the
moments of the distribution.
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6.2. Linear daughter distribution,p = 1, b(r) = rγ (b0+ b1r)

For the linear daughter distribution one may takeγ, b0, b1 as independent parameters and
thereby determine the parametersγ, λ, λ1. Or, one may takeγ, λ, λ1 as independent which
is our point of view. Then theb coefficients are determined byγ, λ, λ1. To see this we
recall that the positive zerok = λ and the negative zerok = −λ1 are solutions of (3.17),
which for the linear daughter distribution is

1

(λ+ γ + 1)
b0+ 1

(λ+ γ + 2)
b1 = 1

1

(−λ1+ γ + 1)
b0+ 1

(−λ+ γ + 2)
b1 = 1.

(6.6)

The unique solution is

b0 = −(λ+ γ + 1)(−λ1+ γ + 1) b1 = (λ+ γ + 2)(−λ1+ γ + 2). (6.7)

Alternatively, if one knew both theb coefficients and the parameterγ from a physical
model of the fragmentation process then one could solve (6.6) forλ andλ1.

Continuing with the solution, from (4.4) forp = 1 we have

φ(η) = 0((λ1+ λ− 1)/α)

0((γ + λ)/α)0((γ + λ+ 1)/α)

α

βλ
ηγ/αG

2,0
1,2

(
λ1− γ − 1

α
; 0, 1

α
; η
)
. (6.8)

With the expansion ofG2,0
1,0(η) for small η in powers of η given in appendix C, the

representation ofφ is

φ(η) = 0((λ1+ λ− 1)/α)

0((γ + λ)/α)0((γ + λ+ 1)/α)

α

βλ
ηγ/α exp(−η)ψ

(
λ1− γ − 2

α
; 1− 1

α
; η
)
.

(6.9)

where

exp(−η)ψ
(
λ1− γ − 2

α
; 1− 1

α
; η
)

= 0(1/α)

0((λ1− γ − 1)/α)
1F1

(
1− λ1− γ − 1

α
; 1− 1

α
;−η

)
+ 0(−1/α)η1/α

0((λ1− γ − 2)/α)
1F1

(
1− λ1− γ − 2

α
; 1+ 1

α
;−η

)
.

The functionψ , sometimes called theψ-function, is a well known special function [18, 19].
From (6.9) we see that theη→ 0 limit is

lim
n→0

φ(η) = 0((λ1+ λ− 1)/α)

0((γ + λ)/α)0((γ + λ+ 1)/α)

0(1/α)

0((λ1− γ − 1)/α)

α

βλ
ηγ/α. (6.10)

With the asymptotic expansion ofG2,0
1,0(η) in powers ofη−1 given in appendix C we

have

φ(η) ∼ 0((λ1+ λ− 1)/α)

0((γ + λ)/α)0((γ + λ+ 1)/α)

α

βλ
η−(λ1−2γ−2)/α

× exp(−η)2F0

(
λ1− γ − 2

α
,
λ1− γ − 1

α
; ;−η−1

)
(6.11)

which is the asymptotic expansion for largeη.
The similarity solution is given by

n(x, t) = Mλ

vλ+1
λ

(1+ βας)(λ+1)/αφ(η)
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whereφ is given by (6.9) and from (3.20) withp = 1

β = 0((γ + λ)/α)0((λ+ λ1)/α)

0((γ + λ+ 1+ p)/α)0((λ1+ λ− 1)/α)
.

According to (4.5), (4.7) and (4.8) the parameter constraints areγ > −1 and

λ1 > γ + 2
λλ1

(γ + 1)(γ + 2)
> 1 γ + λ > 0.

Ziff and McGrady [4] were the first to derive a solution of the fragmentation equation for
the linear daughter distribution. As they noted, the linearb(r) allows a large positiveγ ,
whereas for the power law we have−1 < γ 6 0. The larger range ofγ for the solution
for the linearb(r) persists for the polynomialb(r). This behaviour should be of interest
because it allows distributions that vanish in the small-η limit (6.10), which on physical
grounds would seem to be more reasonable behaviour than the constant or infinite limits of
n(x, t) allowed by the power-law solution.

To show a specific example, we take the allowed valuesα = 3, γ = 1, λ = 1, λ1 = 6.
This gives binary fragmentation with

Ñ = 1+ λλ1

(γ + 1)(γ + 2)
= 2

β = 0((γ + λ)/α)0((λ+ λ1)/α)

0((γ + λ+ 2)/α)0((λ1+ λ− 1)/α)
= 4

3
0

(
2

3

)
.

Then (6.9) reduces to a solution first given by Ziff and McGrady [4] and sinceγ = 1 their
solution has the limiting behaviour limη→0 n(x, t) = 0.

7. Summary and discussion

We have derived a generalization of the Friedlander similarity form of distribution (given by
equation (3.1)) for fragmentation with volume change and we have derived a solution (given
by equation (3.8)) for the time dependence of the moments of the similarity distribution for a
general daughter distribution. By inversion of the Mellin transformation of the fragmentation
we have obtained an exact solution of the equation for a polynomial distribution of daughter
fragments of arbitrarily large polynomial degreep. The solution is a generalization of known
solutions.

The limits for small and large values of the similarity variableη and the long-time limit
in the time variableς follow rigorously from the exact solution and are given by (5.1),
(5.2) and (5.9). The limits for the similarity variable hold for all times 06 ς →∞ and the
long-time limit holds for all values of the similarity variable. A novel feature of the analysis
is that by constructing the solution for all times rather than looking only at the long-time
limit we have been able to identify the time constants for changes in the distribution and
the moments, which are sensitive to the values of the fragmentation parameters.

A single parameterλ determines volume change. Ifλ = 1 volume is conserved, if
λ 6= 1 volume is not conserved and instead the momentMλ is conserved. The effect of
volume change on the distribution and the moments of the distribution is expressed by the
numerical value ofλ that appears explicitly in the solution.

The details of the similarity solution may be seen from the series solutions, the small-
and largeη-limits and theς →∞ limit that have been given. However, a qualitative picture
of the behaviour of the distribution in time can be seen just from the form of the similarity
solution. As discussed in section 5, by regardingst (x) = xλn(x, t) as a time sequence of
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functions of the particle volumex one sees that as time increases the distribution becomes
narrower and the amplitude increases in such a way that the moment distribution becomes
narrower and the momentMλ is constant. Then, limt→∞ xλn(x, t) behaves like aδ-sequence
where the limit is the Dirac delta-function.

Generalizing the daughter distribution to a polynomial form that allows a change in
volume (as well as no change) has introduced new parameters and new allowed numerical
ranges of the parameters into the theory thereby increasing the flexibility of the theory to
match conditions of real fragmentation phenomena.
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Appendix A. The Friedlander similarity form for fragmentation with volume change

We consider the scale transformations of time and particle volume given by

t = r−α(t∗ + t0) x = rx∗. (A.1)

Substitution into the fragmentation equation (1.1) gives, after relabelling the variables, the
transformed equation

∂

∂t
nr(x, t) = −c̃αxαnr(x, t)+ c̃α

∫ ∞
x

yα−1b(x/y)nr(y, t)dy (A.2)

where the transformed distribution is given by

nr(x, t) = r1+λn[rx, r−α(t + t0)]. (A.3)

Equation (A.2) is identical to (1.1), which is to say that (1.1) is invariant under the scale
transformation. The factor in the transformed distribution is arbitrary but has been chosen so
that theλ-moment of the transformed distribution,Mr,λ =

∫∞
0 xλnr(x, t)dx is equal to the

momentMλ =
∫∞

0 xλn(x, t)dx of the original distribution. Thus, (A.3) is a transformation
that preserves the numerical value of theλ-moment. To confirm that the moment of
the transformed distribution is not only constant but equal to the moment of the original
distribution, we take the moment and obtain

Mr,λ =
∫ ∞

0
xλnr(x, t)dx =

∫ ∞
0
xλr1+λnr [rx, r−α(t + t0)] dx.

With y = rx we have

Mr,λ =
∫ ∞

0
yλn[y, r−α(t + t0)] dy = Mλ(t + t0) = Mλ. (A.4)

If n(x, t) is a solution of the fragmentation equation the distributionnr(x, t) generated
by the scale transformation will generally be a different solution. However, there is the
possibility that there is a distribution that is unchanged by the transformation, i.e. is invariant
under the scale transformation. When it exists this distribution is the similarity solution of
the fragmentation equation and it has the same scale invariance as the equation.

To derive the form of the solution we have only to find the function form that is invariant
under the scale transformation, i.e.nr(x, t) = n(x, t). If the transformed distribution is
invariant it is independent ofr. If nr(x, t) = r1+λn[rx, r−α(t + t0)] is independent ofr
then

dnr(x, t)

dr
= (1+ λ)rλn(u,w)+ rλu∂n(u,w)

∂u
− rλαw∂n(u,w)

∂w
= 0. (A.5)
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The general solution of (A.5) is

n(x, t) = µλM
λ+1
λ−1

µλ−1Mλ

φ

(
µλMλ−1

µλ−1Mλ

)
(A.6)

which may be confirmed by substitution into (A.5). We impose the normalization’s
µλ−1 = 1, µλ = 1 in (A.6) and obtain the similarity form (3.1).

One can see at this point a certain generality in the construction of the similarity form.
The only properties of the fragmentation equation that were used were that a moment
Mλ is conserved and that the equation is invariant under the scale transformation and
time translation. Nowhere was the linearity of the equation used or was it necessary
to say anything about the fragmentation kernel, except that certain regularity conditions
are understood. Thus, the above derivation applies as well to the quadratically nonlinear
Smoluchowski coagulation equation [17] when the coagulation terms are homogeneous in
the particle sizes.

Appendix B. The solution for the reduced moments

The positive zeroλ and the negative zerosλ1, λ2 . . . , λp are solutions of

b0

k + γ + 1
− b1

k + γ + 2
− · · · − bp

k + γ + 1+ p = 1. (B.1)

For Ak given by (3.16) we obtain

Aλ−1Aλ−1+α . . . Aλ−1+(n−1)α

= 1

αn

((λ1+ λ− 1)/α)n((λ2+ λ− 1)/α)n . . . ((λp + λ− 1)α)n
((γ + λ)/α)n((γ + λ+ 1)/α)n . . . ((γ + λ+ p)/α)n (B.2)

where(a)n = ρ(a+1) . . . (a+ n−1) is the Pochhammer factorial,(a)n = 0(a+ n)/0(a),
and0 is the gamma function. We may write (B.2) in terms of the gamma functions as

Aλ−1Aλ−1+α . . . Aλ−1+(n−1)α

= 1

αn
[0((λ1+ λ− 1)/α + n)0((λ2+ λ− 1)/α + n) . . .

. . . 0((λp + λ− 1)/α + n)0((γ + λ)/α)0((γ + λ+ 1)/α) . . .

. . . 0((γ + λ+ p)/α)]
×[0((λ1+ λ− 1)/α)0((λ2+ λ− 1)/α) . . .

. . . 0((λp + λ− 1)/α)0((γ + λ)/α + n)0((γ + λ+ 1)/α + n) . . .

. . . 0((γ + λ+ p)/α + n)]−1 (B.3)

Substitution of (B.3) into (3.16) yields (3.18) in the text which is

µλ−1+k = Dp(α, γ, λ)βk[0((k + γ + λ)/α)0((k + γ + λ+ 1)/α) . . .

. . . 0((k + γ + λ+ p)/α)]
×[0((k + λ1+ λ− 1)/α)0((k + λ2+ λ− 1)/α) . . .

. . . 0((k + λp + λ− 1)/α)]−1 (B.4)

whereDp(α, γ, λ) is given by (3.19).

Appendix C. Representations of theG-function

We give here representations of theG-function for small and largeη.
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C.1. Power series atη = 0 and theη→ 0 limit

If 1/α is not an integer then the poles of the gamma functions are simple and summing
over the residues yields the sum ofpFp series given by

G
p+1,0
p,p+1(ap; 0, cp; η) =

5
p

i=10(ci)

5
p

i=10(ai)
×p Fp(1− ap; 1− cp;−η)

+
p∑
j=1

5
p

i=10(ci − c∗j )ηj/a
5
p

i=10(((λi − γ − 1)/α)− (j/α))pFp(1+ cj − ap; 1+ cj − c
∗
p;−η)

(C.1)

where

ap = λ1− γ − 1

α
,
λ2− γ − 1

α
, . . . ,

λp − γ − 1

α
cp = 1

α
,

2

α
, . . . ,

p

α

and

pFp(ap; cp; η) =
∞∑
n=0

(a1)n(a2)n . . . (ap)n

(c1)n(c2)n . . . (cp)nn!
ηn

is a confluent, generalized hypergeometric series. The notationc∗j , c
∗
p in (C.1) means that

the term withi = j is omitted from the product and the term with thej th compound ofcp
is omitted from the argument ofpFp. For smallη the leading terms are

G
p+1,0
p,p+1

(
λp − γ − 1

α
; 0, p

α
; η
)
= π0(1− ρη + · · ·)+ π1η

1/α(1− ση + · · ·)+ · · · (C.2)

whereπ0, π1, ρ, σ are constants. Thus, according to (4.4),

lim
n→0

φ(η) = C0η
γ/α (C.3)

whenη = zα/βα andC0 is a constant which can be obtained from (C.1) and (4.4).

C.2. An integral representation and theη→∞ limit

It is shown in [15] that theG-function can be represented as

G
p+1,0
p,p+1

(
λp − γ − 1

α
; 0, p

α
; η
)

= 1

0((λ1− γ − 2)/α)0((λ2− γ − 3)/α) . . . 0((λp − γ − 1− p)/α)
×
∫ ∞

0

∫ ∞
0
. . .

∫ ∞
0

du1 du2 . . . dup

×u((λ1−γ−2)/α)−1
1 (1+ u1)

−((λ1−γ−1)/α)u
((λ2−γ−3)/α)−1
2 (1+ u2)

−((λ2−γ−1)/α) . . .

. . . u
((λp−γ−1−p)/α)−1
p (1+ up)−((λp−γ−1)/α) exp[−η(1+ u1)(1+ u2) . . .

. . . (1+ up)]. (C.4)

From this representation one can see by inspection that the integrals are finite if we have
the following lower bounds on the zeros ofAk,

λ1 > γ + 2, λ2 > γ + 3, . . . , λp > γ + 1+ p. (C.5)
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The expansion ofGp+1,0
p,p+1(η) in powers ofη−1 can be obtained from (C.4). Following the

same steps given in [15] forλ = 1 we obtain from (C.4) the limit

lim
η→∞φ(η) ∼

α

βλ
η(γ+3)/α exp(−η) (C.6)

where

3 = −
p∑
j=1

(λj − γ − 1− j). (C.7)

Forp = 0 we see from the definition of theG-function thatG1,0
0,1(η) = exp(−η). According

to Luke [18], for p > 1 the expansions ofGp+1,0
p,p+1(η) in powers ofη−1 are asymptotic

expansions. Thus, forp > 1 (C.6) is the limit of an asymptotic expansion.
For example, from (C.4) forp = 1 we have

G
2,0
1,2

(
λ1− γ − 1

α
; 0, 1

α
; η
)
= exp(−η) 1

0((λ1− γ − 2)/α)

×
∫ ∞

0
du u((λ1−γ−2)/α)−1(1+ u)−((λ1−γ−1)/α) exp[−η(1+ u)].

We expand(1+ u)−((λ1−γ−1)/α) in a power series atu = 0, change to the variableξ = ηu
and obtain

G
2,0
1,2

(
λ1− γ − 1

α
; 0, 1

α
; η
)
= η−(λ−γ−2)/α exp(−η) 1

0(λ1− γ − 2)/α)

×
∫ ∞

0
dξ ξ ((λ1−γ−2)/α)−1 exp(−ξ)

(
1− 1

1!

(
λ1− γ − 1

α

)
ξη−1+ · · ·

· · · + 1

n!

(
λ1− γ − 1

α

)
n

ξnη−n
)
.

Integrating term by term gives the series

G
2,0
1,2

(
λ1− γ − 1

α
; 0, 1

α
; η
)

∼ η−(λ1−γ−2)/α exp(−η)2F0

(
λ1− γ − 2

α
,
λ1− γ − 1

α
; ;−η−1

)
(C.8)

where the blank entry in the argument means there is no Pochhammer factorial in the
denominator and in the denominator we used

0

(
λ1− γ − 2

α
+ n

)
= 0

(
λ1− γ − 2

α

)(
λ1− γ − 2

α

)
n

.

Since there are two Pochhammer factorials in the numerator and no Pochhammer factorial in
the denominator it is evident that the series diverges for allη, but it converges asymptotically.
The leading terms for the asymptotic expansion forp = 2 andλ = 1 are shown in [15].
The complexity of the expansion increases very fast asp increases.

Appendix D. The recursion equation for the reduced moments

Multiplying (4.9) by zk and integrating gives

(−k + λ)µk = α

βα

[
− µk+α +

∫ ∞
0

dz zk
∫ ∞
z

b

(
z

w

)
wα−1φ(w) dw

]
(D.1)
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where we have used the boundary conditionszk+1φ(z)|z=0 = 0, zk+1φ(z)|z=∞ = 0 and
µk =

∫∞
0 zkφ(z) dz. Changing the way we do the double integration we obtain∫ ∞

0
dz zk

∫ ∞
z

b(z/w)wα−1φ(w) dw =
∫ ∞

0
dw

(∫ w

0
dz zkb(z/w)

)
φ(w) dw. (D.2)

Then with the change of variablew = w, r = z/w we have∫ ∞
0
dw

(∫ w

0
dz zkb(z/w)

)
φ(w) dw =

∫ 1

0
rkb(r) dr µk+α. (D.3)

With (D.2) and (D.3) in (D.1) we obtain

(−k + λ)µk = α

βα

(
− 1+

∫ 1

0
rkb(r) dr

)
µk+α. (D.4)

With the definition ofAk given by (2.4), we see that (D.4) is the recursion equation (3.12)
derived in another way in the text.
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