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Abstract. The similarity form of the solution of the linear homogeneous equation for

fragmentation with volume change is given. The solution shows the time evolution of the
particle-volume distribution when a particle splits into a polynomial distribution of fragment

volumes. The limits for small and large values of the similarity variable are derived, the long-
time limit for all values of the similarity variable is given and the characteristic time to approach
the limit is identified. The solution shows the effect of volume change on the particle-volume
distribution and on the time dependence of the moments of the distribution.

1. Introduction

A continuous linear equation called the fragmentation equation was introduced by Fillipov
[1] as a model for the fragmentation (splitting) of particles. Since then the solutions of the
equation have been studied by many authors where [1-15] are relevant to the analysis given
here. The equation determines the evolution in time of the volume distribution of particles
as fragmentation into smaller particles proceeds. The assumptions for the theory here and
in the above references are: (i) the particles are characterized by only one variable such
as particle mass or a characteristic dimension of the particle, which here weacile
volume (ii) the fragmentation of the particles does not require interaction with other particles
of the same kind and in this sense is spontaneous. Consequently the fragmentation equation
is linear; (iii) the discrete nature of the particles is ignored by taking the distribution of
the particles to be a function of a continuous particle-volume variablesherex > 0

and thus there is no small particle fragmentation cut-off; (iv) the probability of a particle
fragmenting is assumed to be independent of its history and proportioneff tohere

a > 0 is a real parameter (the assumptien> 0 is necessary for the existence of a
similarity solution and excludes the shattering kind of fragmentation); (v) changes in the
particle-volume distribution caused by spatial gradients in the concentration of particles are
assumed negligible, so spatial coordinates are absent from the theory. Later we will make a
further assumption for the function form of the probability for the number and distribution

of fragment volumes when a patrticle splits into fragments.

We refer to Edwardset al [6] and Huanget al [10] for a discussion of physical
fragmentation processes in combustion where particle volume (or mass) can change. For
further applications we refer to Ziff and McGrady [4] on the fragmentation of polymers
and to Redner [9] for a general discussion of fragmentation processes. The emphasis here
is on the mathematics of constructing an exact solution for fragmentation with volume
change where we point out properties of the solution that should be of interest for physical
applications.
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The fragmentation equation provides an accounting in time of the number and volumes
of the patrticles as they fragment into smaller particles. The equation assumed here and in
[1-15] is

%n(x, 1) = —Coxn(x, t) + Cq / y“_lb(x/y)n(y, t) dy. (1.2)

The notation and the description of the terms are the same as in [15] but for convenience
we repeat them here. In (1.1)is the volume of a particle with the dimension of length
cubed,« is the degree of homogeneity in r is time in seconds and(x, ¢) is the uniform
spatial concentration of particles per unit particle volume with dimensign Throughout

the analysisx > 0, which is a necessary condition for the existence of a similarity solution.
The first term on the right-hand side of (1.1) is the rate at which the concentration of
particles of volumex decreases by fragmentation and the second term is the rate at which
the concentration of particles of volumeincreases due to the fragmentation of particles
with volumes larger tharx. The rate constanf, has the dimensions of*t~1. The
daughter-fragment distributioh(x/y), determines the number and distribution of fragment
volumes when a patrticle splits into fragments. We assumebthaty) is a function of the

ratio x/y and thus is homogeneous of degree zero. The fragmentation terms are, therefore,
homogeneous of degreewhich is necessary for the existence of solutions of the similarity
form. If [Ol rb(r)dr = 1 then the first moment of the particle distribution, which is the

volume (or mass)is conservedn the fragmentation process. However,f(ffrb(r) dr #1

then the volumas not conservedFillipov [1], Edwardset al [6], Cai et al [7] and Huang

et al [10] have allowed this generality in the theory. The daughter distribution determines
the number of fragments per fragmentation, which we fraiment numbeand is given

by N = folb(r)dr. The fragment number does not change during the evolution of the
distribution so as the particles become smaller they continue to split into the same number
and the same distribution of fragments.

Edwardset al [6], Cai et al [7] and Huanget al [10] characterize the change in
volume that occurs in the fragmentation procesdiasrete The same authors also consider
another kind of change in particle volume caused by a surface effect, such as evaporation
or condensation, that changes the particle volume without changing the number of particles.
Here we consider volume change by fragmentation @mdot consider volume change by
surface effects.

In [15] a similarity solution forvolume-conserving fragmentatiofor a polynomial
daughter distribution has been given. We show here that the solution given in [15]
generalizes in a simple way to give the solution fragmentation with volume change
Unfortunately the similarity solution is not the general solution of the initial value problem.
However, Kolmogorov [16] has shown in a special case and Fillipov [1] has shown for
conditions satisfied here (except for volume conservation) that for long times the general
solution converges to a limit distribution. The theorem should also hold for fragmentation
with volume change. The limit distribution is determined here by taking the long-time
limit of the similarity solution (called a stationary solution by Fillipov) and thus, after a
sufficiently long time, other solutions with initial conditions different than for the similarity
solution should approach the limit of the similarity solution.

We recall that in the theory of volume-conserviogagulationthe Friedlander ansatz
[17] assumes that the solution for the particle-volume distribution has the similarity form

_N0p@) _ Nox

, 1
n(x,t) v v

(1.2)
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where¢(z) is called the reduced distributiow,(¢) is the total number of particles ard is
the conserved total particle volume. The similarity variablis the ratio of the volume
of an individual particle to the instantaneous mean patrticle volutne= V/N(t), where
N (¢) is the zeroth moment and is the first moment of the distribution. Thiéh moment
of the distribution is defined by

M = /ooxkn(x, t) dx (1.3)
0

with & a real number. As shown, for example, in [17], substitution of the Friedlander
similarity form into the volume-conservingoagulation equation separates the partial
derivative equation into an ordinary equation in time for the momafiteand an ordinary
equation in the similarity variable for the reduced distributig(y). This provides the
mathematical advantage of working with two ordinary equations rather than a partial
differential equation. Likewise, for volume-conservifrggmentation substitution of the
Friedlander form into (1.1) separates the equation in essentially the same way as for
coagulation. The Friedlander ansatz separates variables for bottotifiaear coagulation
equationand thelinear fragmentation equatiobecause both equations are homogeneous in
the particle volume and are first order in the time derivative and thus have the same scaling
invariance.

To obtain the similarity form of solution for fragmentation whicloes not conserve
volume one needs to generalize the Friedlander similarity form (1.2). We obtain the
generalization by following closely the analysis of the scaling invariance given in [15].
Then, as with volume-conserving fragmentation, substitution of the generalized Friedlander
form into the fragmentation equation (1.1) separates the equation into ordinary equations for
the moments and the reduced distribution. We then proceed with the solution of the moment
equation and the reduced equation by the same steps taken in [15]. The solution of the
reduced equation was obtained in [15] by the Mellin transformation used earlier by Ziff and
McGrady [4], Cheng and Redner [5, 8] and Ziff [11]. The solutigr, ) in the form given
by (1.2) for volume-conserving fragmentation was found to be proportional to a Meijer
G-function which may be expressed as a linear combination of generalized hypergeometric
functions. We show here that the similarity solution for fragmentation with volume change
is a simple generalization of the solution for volume-conserving fragmentation. The solution
for small z is expressed as a sum of generalized hypergeometric series in powgts of
The continuation of the smatl-solution to large values of is anasymptotically converging
series in powers of ~*.

The small- and large-limits of the solution are shown for all times and the long-time
limit is shown for allz. We discuss the change of the shape of the distribution as the
fragmentation proceeds and identify the characteristic time to reach the limit distribution
and the characteristic times to change the moments of the distribution. Also, we give two
simple examples of the similarity solution which illustrate how the allowed numerical ranges
of the fragmentation parameters are determined and show in a simple setting the small- and
largez limits and the long-time behaviour of the solution.

Finally, in the summary and discussion section we collect and comment on the results
of the analysis that seem most significant. In the appendices we give a derivation of the
generalization of the Friedlander similarity form for fragmentation with volume change and
we show some of the details of the special function analysis.
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2. The moment equation when there is volume change

We first consider the moments of the distribution in a general way that does not involve a
Friedlander ansatz or a similarity solution. Taking moments (the Mellin transform) of (1.1)
we obtain
dM, (1)
dr

We suppose that the daughter distribution is such that there is a positive kvatue for
which

1
=—5a<1— / rkb(r)dr>Mk+a(t). (2.2)
0

1
/ r*b(r)dr = 1. (2.2)
0

If (2.2) is satisfied it follows from (2.1) that the momeWf, is constant. This is an important
assumption that will be satisfied by the functib@r) that we consider later. As a simple
example of (2.2) leb(r) = bor” whereby andy are real numbers. Then,

1
/ Po(r)dr =bo/(A+y +1) =1
0

and solving forh we haver = bg—y — 1. If bo = y + 2 theni = 1 and volume is
conserved. The daughter distributiéxy) = bor” with by = y + 2 has been considered

in the papers [1-15]. However, iy # y + 2 thenx # 1 and volume is not conserved
but the momentM, is conserved, which is a generalization that has been considered in
[1,6,7,10,14]. We suppose for a genebét) that (2.2) is satisfied and thus the moment
M, is constant. Since the coefficient df; ., in the moment equation vanishes foe= A,

we may write the coefficient in (2.1) in the factored form

dM; (1)
dr
where A, is a function ofk defined by

= —&y(k — M)At Myio () (2.3)

1
k—MAr=1— f r*b(r) dr. (2.4)
0

We impose the additional restriction on the daughter-fragment distribution that it is such
thatA; > O fork > A — 1.

Since the particle distribution(x, #) is non-negative it follows that the momemnig,
defined by (1.3) are positive. Thus, by inspection of (2.3), we see that the moknents
increase and the moments> A decrease in time. In particular, fér= 0 andk = 1 we
have
dv (¢)

dvG) L o
dr = Co(N — 1)Ma(t) dr - Ca(l B)Ml+a(t) (25)

where N(¢) is the total number of particled(¢) is the total volume of particles and

1 1
N = / b(r)dr B = / rb(r) dr. (2.6)
0 0

It follows from (2.5) thatN is the number of fragments per fragmentation and that i 1
the volume of particles is conserved in the fragmentation process, as was asserted in the
introduction.
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3. The generalization of the Friedlander similarity form and the similarity solution of
the moment equation

The similarity ansatz given by equation (1.2) was first applied in volume-conserving
coagulation theory by Friedlander [17] and was first applied in volume-conserving
fragmentationtheory by Peterson [3]. Since then the similarity form of the distribution

or a limiting form of it have been assumed in a number of studies of the fragmentation
equation. In [15], rather than introduce the similarity solution as an ansatz it was deduced
as a consequence of the particle volume and time scaling invariance of the fragmentation
equation. Following closely the derivation given in [15], where the volume is constant, we
have derived a generalization of the Freidlander function form when a maodigrnt # 1,
instead of the volum& = M, is conserved. We show in appendix A that the generalization

is

1) =
n(x,t) M M,

(3.1)
where the upper indices are powers of the moments and the lower indices identify the
moment. By comparing (3.1) with the volume-conserving similarity form (1.2) we can
understand this combination of variables without going through the derivation. First we
see that forh — 1 we recover the Friedlander form. Then we see that in the similarity
variable (still calledz) the volumeV has been replaced by the conserved monmiént In

the numerator the particle numb®i(r) = My(t) has been replaced by the momefit 1 (¢),

with the index shifted by one from the conserved moment to make the similarity variable
dimensionless. Likewise for the time-dependent multiplicative factor, the volume in the
denominator has been replaced by the conserved momigand the particle numbey ()

in the numerator has been replacedMy_1(¢). Then the powers are chosen so thét, ¢)

has the correct dimensiorm2. The A-moment of (3.1) is

00 00 A1 00
/ ax, ) dy = / ka dx = M,\/ Z¢(z)dz
0 0 M; 0

which confirms that the momem,, is identically constant for a solution of the form (3.1)
and incidentally implies the normalizatiojfO 7*¢(z)dz = 1. We say that a solution is a
similarity solutionif it has the form (3.1) and satisfies the fragmentation equation (1.1) for
t > 0, where the momen¥,_; and all higher moments are finite.

We first derive the similarity solution of the moment equation and then go on to derive
the solution for the reduced distributi@n(z). To derive the moment solution we substitute
the general similarity form (3.1) into the definition of the moments (1.3) and obtain

k+1—x
M, L 3.2
() = g ij(t) (3.2)
where
m =/O Fp(z)dz (3.3)

are thereduced momentdn particular, fork = » we haveM,; = u,M; and fork =1 —1
we haveM,_; = u;_1M,_1. Thus, for consistency we must haug_; = 1 andu; = 1.
These are the normalization conditions that replage= 1 andu; = 1 that are implicit in
the volume-conserving Friedlander ansatz.
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Substitution of (3.1) into the moment equation (2.3) gives

w1, AM () N
M) == = E s M. (3.4)
Takingk = A — 1 in (3.4) and usings;_1 = 1 we obtain
dM, 1 (t -
Mﬁ:f(z)kditl() = Ca i1l 1+a M. (3.5)

One can check the units of the moment equations by recalling thatMjim= x*-1,
dim(¢,) = x~*t~* and all other quantities are dimensionless.
The integral of (3.5) is

M;_1(t) = My _1(0)(1 + %) (3.6)
where

BY = aptasr—14Ar-1 (3.7)

is a significant dimensionless parameter and= c¢,v5t is a dimensionless time. The
parametet, = M, /M,_1(0) is the initial mean value af* and is akin to the initial mean
particle volumev; = V(0)/N (0) and reduces to it wheh — 1. Substitution of (3.6) into

(3.2) gives the solution for all the moments as

Mi(t) = My(O)(L+ p2g) k=P (3.8)
where
My (0) = peMy—1(0yvy (3.9)

are the initial values of the moments of the similarity solution. In particular, we see from
(3.8) that the number and volume are given by

N(t) = NO(L+ p*s)"* V(1) = V(0)(1+ Bog) M/, (3.10)

By inspection of (3.10) it is evident that a decrease in volume<(1) slows the growth
of the particle number andice versaif the volume would be increasing. As is evident
from (3.8), the exponent for ratios of moments is independerit. oFor instance for the
instantaneous mean particle volumgt) and thev, () mean value we have
V@) o —1/a M

vi(t) = NO vi(1+ B%) v.(1) = M1

To emphasize the generality of the moment solution (3.8) we point out that in the
derivation we did not need to assume a specific function form for the daughter distribution.
Nor did we need to know specifically the reduced distribuigan), only that it exists and
its moments (3.3) are finite fot > A — 1. However, the allowed numerical ranges for
A and the other fragmentation parameters depend on the daughter distribution and will be
determined in the construction of the solution for the reduced distribution.

=, (1+ %)V, (3.11)

3.1. The reduced moment equation and the reduced moments for the polynomial daughter
distribution

By comparing (3.4) and (3.5) we obtain the fundamental recursion relation

o

3.12
ad (3.12)

Mita =
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where we use@® = au,_1,44,-1. Starting withk = A — 1 and iterating (3.12) in steps
of o we obtain the solution of (3.12) which is
,Bna
a"Ay 1A, _14a - Ar_14 (=D
As in the analysis in [15] for volume-conserving fragmentation we assume the
polynomial form of the daughter-fragment distribution
b(r) :ry(bo+b1r+~-~+bprp) (3.14)

wherep is a positive integer ang and the coefficientéo, by, ..., b, are real. Substitution
into (2.4) and integration gives

(3.13)

Mr—Ltna =

1
(k—MAy=1— / r*b(r) dr
0

b b b
—1_ 0 _ L ————— P (3.15)
k+y+1 k+y+2 k+y+p+1
There arep + 1 zeros of(k — A)A;. One of them,x, has been assumed to be positive
and we now suppose that the othereros are real and negative. These conditions can be

satisfied by proper choice of tliecoefficients. Thus, we may writé, in the factored form
(k+Ar)k+22)...(k+24p,)

A k+y+Dk+y+2)...kt+y+p+1) (3.16)
where we suppose thatii, Ay, ..., A, are real, positive numbers and thus
—A1, —A2, ..., —A, are the zeros o#A;. From (3.15) we see that the positive zero and
the negative zeros are solutions of

bo b by (3.17)
k+y+1 k+y+2 k+y+1+4+p

We show in appendix B that fod; given by (3.16) the solution (3.13) for theemoments
is given by
-1tk = Dyla, v, MBIk +y + 1) /)T ((k+y + 1+ D/a)...
(k4 y + 2+ p)/a)]
X[C(k+r+A=D/)T((k+r2+A=D/a)...
Dk + 2y + 2 =D/t (3.18)
whereT is the gamma function and
T+ A=D1/ (41— D/a)...T((hp + 2 — D/a)

Dy(a,y, 1) = (3.19)
F((y + M)/l ((y +2+D/a)...T{(y + 2+ p)/a)

is independent ok. For brevity we will refer torq, Ao, ..., A, as zeros ofd; even though

—A1, —A2, ..., —A, are the values for whicl; = 0. Recalling that we have normalized

with u; = 1, it follows from (3.18) and (3.19) that
F((y +2M)/)T((A + 1) /)T (A + 22) /o) ... (A + 2p) /)
C((y +2+ 1+ p)/)T (1 + 1 —D/)T((h2+ 1 —D/a)...T((h, + A — D/a)’
(3.20)
We see that fory + A = 0, because of the singularity &f((y + 1)/«), that 8 = co. To
avoid this singularity and to insure thAt< oo we impose the constraint + A > 0. The

inverse Mellin transform of (3.18) gives the solution for the reduced distributi@s we
now show.

ﬁ:
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4. The solution for the reduced distribution ¢(2)

The inverse Mellin transform is given by

1
P(2) = — / 27Dy dk 4.1)
2ri Br
where Br is the Bromwich path in the compléxplane (fromk = —ioco to k = +ioco to the

right of the singularities ofi;) andu, is given by (3.18) witht continued to the Bromwich
path.

Substitution of (3.18) into the inversion integral (4.1) and making a change of the
variable of integration gives

Py — ¥ v
¢(m) = Dp(a, y, A)En

1 o+ico
/ n [Tk + L/a)...Tk+ p/a)]

« =
2mi —ioco

x[Ctk+ G-y = D/)T(k+ (2—y —D/a)...

e+ Oy —y = D/a)] tdk (4.2)

whereo > 0, n = z%/B% is the scaled similarity variable ari{n) = ¢(z). Fortunately, the
inversion integral in (4.2) is a particular case of a known special function called a Meijer
G-function. An analysis of the general-function and its properties are given by Luke
[18]. There one finds the definition of our particul@rfunction as

ofrp—y—-1 _p
G;;lﬁ (pa’ 0, o ’7>
1 o+ico e
=20 ) 7 [C(Tk + L/a)...T'(k + p/a)]
x[Ctk+ G-y —=D/)T(k+ 2=y —D/a)...
vk + (p —y — D/a)] tdk (4.3)

where we have used the short notation
A, —y —1
p+10 [(Ap —V .nP.
s (Lo 2

M—y—1 —y-1 A,—y—1 12
:GH%’& L e A 0=, 5, Py).
pp o o o o o o

The lower-inner index is the number of gamma-function factors in the denominator and
the first p arguments of thes-function show the arguments of the denominator factors.
The upper-inner indeyp + 1 is the number of gamma-function factors in the numerator and
the nextp + 1 arguments of5, including the zero, show the positions of the poles of the
numerator factors. The upper-outer index being zero means that there are no more gamma
function factors in the numerator and the difference of the upper-inner and lower-outer
indices being zero means that there are no other gamma-function factors in the denominator.
For p = 0 theG-function (4.3) is the exponential function, fpr= 1 it is a sum of two, F3
confluent hypergeometric series and for- 1 it is a linear combination of F,, generalized
confluent hypergeometric series, where

n=00
(av)n(@2)n - .. (ap)a 0"
[)F[J(alaa27""a});cla’-"9c[);n):Z - - pnil

n—0 (cn(c2n - - - (cp)n n:
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and(a), = a(a+1)...(a +n — 1) is the Pochhammer factorial, which is related to the
gamma function by (a + n) = I'(a)(a),.
With (4.3), we write (4.2) as

$(n) = Dy, v, A)%n”“c,’fj,i‘i (A”ayl 0., n> . (4.4)
The solution depends oh in the coefficient of theG-function and depends of in the
scaled similarity variable in the argument of tiaefunction which depends oin. The
solution (4.4) is the same as the solution for volume-conserving fragmentation given in [15]
except that it contains the parameterwhich now need not be unity and the parameters
A1, A2, ..., A, (the zeros ofA;) in the argument ofG are shifted from what they would

be for volume-conserving fragmentation. The solution (4.4) reduces to the solution for
volume-conserving fragmentation if everywhere in the solution and in the determination of
the zeros by (3.17) one takes= 1.

There are other representations of thdunction besides the one given by the inversion
integral (4.3). Two alternative representations have been derived in [15] which, for
convenience, we show again in appendix C. One of these fﬁ as a linear
combination of, F, generalized hypergeometric functions from which one obtains the small-
n limit. The other is a real multiple integral representation that shows the constraints on
the zeros ofA; and is used to derive the largeasymptotic limit of the solution. We will
show the details of both of these representations forpthe 1 case.

4.1. Constraints on the parameters

One sees by inspection of the integral representation given in appendix C by equation (C.4)
that a necessary condition for the existence of the integrals is

M>y+2r>y+3,.., 4, >y+1+p. (4.5)
It follows from (3.15) and (3.16) witlt = O that the fragment number is given by

Mida.. . A,
+Dy+2...(r +1+p)’

If one wants two or finitely more fragments per fragmentation then we have the further
constraint

(4.6)

1
1\7:/ b(r)dr =1+ 2Ag=1+
0

Mihz. .. Ay
>1 y > -1 (4.7)
Y+ +2...(v +1+ p)
As we noted above, for finitg it is necessary that
y+Ar>0. (4.8)

We impose the constraints (4.5), (4.7) and (4.8) on the fragmentation parameters.

4.2. The reduced equation fgr

One of the curious features of the similarity solution is that by applying the Mellin
transformation and its inversion we have been able to construct the solution without ever
considering the ordinary differential equation satisfied by the reduced distribution As

noted in the introduction, the equation satisfied ¢of¢) is obtained by substituting the
similarity form (3.1) into the fragmentation equation (1.1) and separating the variables
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andr. Carrying out this substitution one confirms that the similarity variable and the time
separate and yields threduced equation

il + A+ Me(2) = a[ —2%¢(2) +/ b<z>w”_l¢(w) dwi| (4.9)
dz B . w

Z

whereB* now appears as a separation parameter. When the proper boundary conditions are
enforced the solution of (4.9) should be (4.4). Thus, another approach to constructing the
solution¢(z) (or equivalently®(n)) would be to try to solve (4.9) as a linear combination

of ,F, series. For consistency one should obtain the same solution that was obtained by
the Mellin transformation. However, we have not tried to construct the solution in this
way, rather, as a simple check for consistency, we have taken moments of (4.9) and find
again the recursion formula (3.12) fa, as we should. In appendix D we show that the
recursion equation (3.12) fqr, is obtained by taking moments of (4.9).

5. The small- and larges; behaviour for ¢(n7) and the long-time limit for n(x,t)

5.1. The smalk limit for ¢(n)

The power series representation @ﬁfpﬂ(n) at n = 0 for a general polynomiab(r) is

given in appendix C where we show the leading terms of the series. From (C.1) and (4.4)
we obtain the limit

lim ¢ (n) = Con”’® (5.1)

where Cy is a constant that is determined by (3.19), (4.4) and the leading term in (C.1).
Thus we have the general result that the smallewer-law behaviour is determined by

(the leading term in the daughter-fragment distribution) and does not depend explicitly on
the coefficients of the polynomial factor inr). However, the values of are constrained

by (4.5), (4.7) and (4.8) and in this sense depend on the other fragmentation parameters in
the polynomial factor. We will see that by allowing a larger rangeyfdhat the polynomial

factor can have a significant effect on the smabiehaviour.

5.2. The larges asymptotic limit forg (1)

An integral representation for tk@ﬁf;ﬂ(n) was derived in [15] fo. = 1 and with only a

change in notation is given for # 1 by equation (C.4) in appendix C. Following the same
steps given in [15], the limit for large-obtained from the integral representation is

im @(n) ~ Coo ¥/ exp(—n) (5.2)
n—o0 /3)‘

whereC,, is a constant,
)4

A== (j-y—-1-)) (5.3)
j=1
and the lower bounds on;, j = 1,2,..., p, are given by (4.5). It follows from

(5.3) and (4.5) thatA < 0 and hence the limit (5.2) is bounded from above by
constant x n"/% exp(—n).

According to Luke [18, section 5.10,p 189], except for= 0, for which G5 is the
exponential function, the large-expansion of th&s-function is an asymptotic expansion,
as we have indicated by the notation. Thus, the limit (5.2) is the limit of an asymptotically
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converging series im~!. In appendix C for the special cage = 1 we confirm the
asymptotic nature of the expansion. There we show that

M—y—1 1
G (y ;0, = n)
’ o (07

M—y—2 M—y -1
Nﬁ“lVZ)/“eXp(—n)zFo( LTy e Ty ;;—771) (5.4)
o o
where
M—y—2 m—y—1 ~ =X g —y —D,0a—v -1,
zFo<l roenny ;;—n1)=2 L=y ,1 ’ (=m~". (5.5)
o (07 =0 n:

Because of the two Pochhammer factorials in the numerator it is evident that the series
diverges for allp, but it converges asymptotically.

5.3. The long-time limit of the similarity solution for ajl

We recall that the full similarity solution is given by (3.1). Substitution of the moment
solution (3.6) into (3.1) gives

n(x,t) = %(1 + %)V () (5.6)
A

where

1 <Mxl(t)> = 1A prone. (5.7)

T T\ M pevs
Thus, except for the dependencevgfand s on A, the similarity variables for fragmentation
with constant volume and fragmentation with volume change are the same functigns of
For A — 1, (5.7) reduces to the Friedlander similarity variable.
In the limit ¢ = ¢, vyt — oo we have
lim n = ot _ Cax®t

o
§—>00 z

M0 M, M

i - — i a N+ ja A p(142) (LA fa

§IE>T]OO M)}: - U;:+1 §|I—r>noo(1+ﬂ g) )):+1/3 g (58)
where we see that andv, cancel out of the scaled similarity variable. To denote the limit
of the similarity variable we use the notation, = lim__... n = ¢,x*¢, which is justg
with the initial average ‘volumeb, replaced by the arbitrary particle volume Thus, with
(5.6) and (5.8) we obtain the limit

lim n(x, 1) = Cc*™Vp (1) ¢ = Cuuit Noo = Cax”t (5.9)
c—>0o0

where C is a constant. Thus, iB*¢ > 1 and (¢f“s)/(A + 1) > 1 then (5.6) may be
represented by (5.9). Usually the long-time behaviour is emphasized and then the parameter
B does not appear in the analysis. However, from (5.6) and (5.7) we seg ithaignificant
for setting the time scale of the fragmentation process. For example, because of the pole
at y + 2 = 0 in the gamma function in the numerator in (3.20),yif+ A — 0 then
B — oo and consequently in a very short time the distribution approaches the long-time
limit. The parametew; is usually not shown; however, we show it here because it affects
the fragmentation time scale.

The mean value, appearing in solution (5.6) is an initial condition that is independent
of the fragmentation physics and may be chosen arbitrarily. Thus, the similarity solution
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is actually a one-parameter family of solutions labelled with the parangte®n account

of the linearity of the equation one can form additional solutions by the superposition of
similarity solutions with different values af,. However, for long times, as we have seen
in (5.9), v, cancels out of the solution and thus, up to a constant multiplicative factor,
solutions with differentv;, tend to the same limit. Therefore, different linear combinations
of similarity solutions tend to the same limit. This is an example of Fillipov’s theorem [1],
which states that solutions of the fragmentation equation with different initial conditions
tend to the same limit distribution.

5.4. The long-time, smalj-limit and the long-time, largey limit

When considered as a function gfinspection of the similarity form shows that one may
think of (M, /v}™) (1 + p*¢)¢+V/* as the amplitude of the distribution. The amplitude of
the distribution changes in time but the shape of the distribution as a functiplaés not
change and hence the name similarity or self-similar. One can also consider the distribution
as a function ofx, or better as a function ofx/v,)*, with ¢ a parameter. Then, as a
function of (x/v;)* with increasings the shape of the distribution changes by becoming
narrower. Asg increases the amplitude ofx, t) increases (because of the increase in the
number of particles) and the distributignas a function of(x/v,)* becomes narrower in
such a way that the mome; remains constant. As the distribution becomes narrower
there is still a front and a tail of the distribution where the same definitions of frost ()

and tail ¢ > 1) continue to apply. (If one wants to be more precise then one can inspect
the leading terms in the smajl expansion and the large asymptotic expansion.) In the
limit ¢ — oo the amplitude of the distribution tends to infinity with, constant. Thus we
may consider the functios (x) = x*n(x, t) as a sequence of functions efwith ¢ (or ¢)

a parameter. As increases the functions af become narrower and increase in amplitude
while the integral over remains constant and fer— oo the sequence, (x) is localized

in the positive neighbourhood aof = 0. This behaviour is like @-sequence [19], where

the limit ast — oo is the Dirac delta-functiod(x). From a physical point of view this is

a natural limit for a system of particles that continues to fragment with no smallest particle
cut-off in the fragmentation process. For— oo, the momentsM;, k > A vanish, the
momentsM,, k < A diverge and for the special valde= A, the moment remains constant,
which is the behaviour of the moments of a Dirac delta-function.

Another simple feature of the fragmentation kinetics is shown by (3.11), where for
B*c/a > 1 we see that the instantaneous mean volume of the distribution approaches zero
according to the power law,(r) = vif¢c~ Y%, wherev; is the initial mean volume. We
see that this behaviour is independent of all fragmentation parameters except the degree
of homogeneityy, i.e. independent of parameters that characterize the daughter-fragment
distribution. This behaviour is well known and has been deduced from the scale invariance
of volume-conserving fragmentation.

If there is interest in the dependence of the distribution separately and ¢ for long
times, one can make this separation in the limits (5.1), (5.2) and (5.6). Then fordarge
and smalln., we have

lim  n(x, 1) = Cog P (x ju,)Y (5.10)

G—>00,N—0

whereCy is a constant. For large and largen,, we have

y+A a
lim  n(x, 1) ~ C, g*THrTa/e (x) exp(— g)i ) (5.11)
Uy v

G —> 00,1 —> 00 h
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whereC/ is a constant.

We now give examples where we will see in a simple setting how the solutions depend
on the fragmentation parametersi andx; and we will show the allowed numerical range
of y, A and ;.

6. Examples forp=0 and p=1

The simplest cases are the power Ign=f 0) and the linear§ = 1) daughter distributions.

6.1. Power lawp = 0, b(r) = bor”

According to (4.3) withp = 0 the G-function is given by

1
(ﬁﬂqom):if— 0 T (k) dk = exp(—n). (6.1)
' 7Tl Jer
With (4.4) and (6.1) we have the reduced distribution
_ o
P(n) = 7% exp(—1) (6.2)

Dy + 0/
and with (3.1) the similarity solution is

M _
n(x, 1) = ﬁ(l + B ) VG (). (6.3)
A
For p = 0 we have
- A C((y +2)/a)
bo=r4+y+1 N=1+ " = 6.4
° Y y+1 Mo +i+ D OV
where the parameters satisfy the constraints
A
> -1 +1>0 — > 1 6.5
Y Y Y (6.5)

For (A + D)%/ > 1, B%c > 1 we obtain the long-time limit from (6.2) and (5.8).
If A =1then—1 <y < 0, N and g are finite, there are two or more fragments per
fragmentation and from (6.2) and (6.3) we recover the volume-conserving solution given
by Peterson [3].

Equation (3.8) gives the solution for the moments forallBy inspection of (3.8) we
see that the characteristic real time for the change in the moments is

. o
=
(k — M) Becyvy

where the moments with close to) of course have large time constants. Oryif> —A

the parametep becomes large, the time constant becomes small and there is a very rapid
change of the moments except fowvery close tor. As we see the characteristic time is
determined by the allowed numerical valuesa9fy, 1, the rate constarti, and the initial

mean moment;. The mean moment, is an initial condition but the parametessy, A

and ¢, can only be obtained by an analysis of the physics of the fragmentation process,
or by fitting to measurements on the evolution of the distribution or measurements of the
moments of the distribution.
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6.2. Linear daughter distributiory = 1, b(r) = r¥ (bo + b1r)

For the linear daughter distribution one may tgkebo, b1 as independent parameters and
thereby determine the parametersi, A;. Or, one may taker, A, A; as independent which
is our point of view. Then thé coefficients are determined by, A, ;. To see this we
recall that the positive zerb = A and the negative zerb = —\; are solutions of (3.17),
which for the linear daughter distribution is

1 1 1 1
bo + b1=1 bo + b1=1
G+ry+D T ity +2 " (—mty+D T Aty +2t
(6.6)

The unique solution is
bo=—-(A+y+DH(—r+y+D bi=A+y+2(—r1+y+2). (6.7)
Alternatively, if one knew both thé coefficients and the parameter from a physical
model of the fragmentation process then one could solve (6.6) ford A;.
Continuing with the solution, from (4.4) fgv = 1 we have
'+ xr—21/a) o o M—y—1 1
! G (TR0, T ). (6.8)
L((y + M) /)l ((y + 2+ D) /a) B o
With the expansion ofGig(n) for small » in powers ofn given in appendix C, the
representation o is

o(n) =

_ T((h+ A — 1)/a) @ (Al—y—z _1.>
P = F G 0/l + A+ Djay g SRV T )
(6.9)

where

M—y —2 1
exp(—n)y (1; 1-; n)

- Id/e) 1F1(1_)‘1_V_1;1_1;_,7>

rAM—y—-D/o) o o

I'(—1/a)n/® M—y—2 1

1F1 1-— 5 .
(A —y —2)/a) o

The functionyr, sometimes called th¢-function, is a well known special function [18, 19].

From (6.9) we see that thg— 0 limit is

I'((A+r—1)/a) I'(1/w) o
Ty +M/)T((y + 2+ D/) T (A1 — y — D/e) B*

With the asymptotic expansion aﬂijg(n) in powers ofy~! given in appendix C we
have

nr’e. (6.10)

l@oa(n) =

a(n) ~ F(()"l + A— 1)/(1) g —(M—2y-2)/a
C((y + M) /)T ((y + 2+ 1) /a) B
)\.1—)/—2 )»1—)/—1“ _1
X eXIX"])ZFO ) s N (611)
o o

which is the asymptotic expansion for large
The similarity solution is given by

M _
n(x,1) = UTZG + B )G ()
A
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whereg is given by (6.9) and from (3.20) witp = 1
'y +2) /)T (A + 21)/a)

C((y +2+1+ p)/)T (1 + 1 = D/a)

According to (4.5), (4.7) and (4.8) the parameter constrainty are—1 and
Arg

T >

y+Dy+2

Ziff and McGrady [4] were the first to derive a solution of the fragmentation equation for
the linear daughter distribution. As they noted, the linkaf) allows a large positive/,
whereas for the power law we havel < y < 0. The larger range of for the solution
for the linearb(r) persists for the polynomiak(r). This behaviour should be of interest
because it allows distributions that vanish in the smalimit (6.10), which on physical
grounds would seem to be more reasonable behaviour than the constant or infinite limits of
n(x, t) allowed by the power-law solution.

To show a specific example, we take the allowed vatues3,y =1,1 =1, 1; = 6.
This gives binary fragmentation with

ﬂ:

M>y+2 y+i>0.

- AL
T oD +2
8= C((y +2)/a)T (A + A1) /) B ﬂr <2>
TT(y+ A+ /T (i +Ar—D/a) 3 \3

Then (6.9) reduces to a solution first given by Ziff and McGrady [4] and sjneel their
solution has the limiting behaviour limon(x, ) = 0.

7. Summary and discussion

We have derived a generalization of the Friedlander similarity form of distribution (given by
equation (3.1)) for fragmentation with volume change and we have derived a solution (given
by equation (3.8)) for the time dependence of the moments of the similarity distribution for a
general daughter distribution. By inversion of the Mellin transformation of the fragmentation
we have obtained an exact solution of the equation for a polynomial distribution of daughter
fragments of arbitrarily large polynomial degrge The solution is a generalization of known
solutions.

The limits for small and large values of the similarity variabland the long-time limit
in the time variables follow rigorously from the exact solution and are given by (5.1),
(5.2) and (5.9). The limits for the similarity variable hold for all timesld; — oo and the
long-time limit holds for all values of the similarity variable. A novel feature of the analysis
is that by constructing the solution for all times rather than looking only at the long-time
limit we have been able to identify the time constants for changes in the distribution and
the moments, which are sensitive to the values of the fragmentation parameters.

A single parametei determines volume change. Af = 1 volume is conserved, if
A # 1 volume is not conserved and instead the momeptis conserved. The effect of
volume change on the distribution and the moments of the distribution is expressed by the
numerical value of that appears explicitly in the solution.

The details of the similarity solution may be seen from the series solutions, the small-
and largey-limits and thes — oo limit that have been given. However, a qualitative picture
of the behaviour of the distribution in time can be seen just from the form of the similarity
solution. As discussed in section 5, by regardipg) = x*n(x, t) as a time sequence of
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functions of the particle volume one sees that as time increases the distribution becomes
narrower and the amplitude increases in such a way that the moment distribution becomes
narrower and the momem,, is constant. Then, lim,, x*n(x, t) behaves like a-sequence
where the limit is the Dirac delta-function.

Generalizing the daughter distribution to a polynomial form that allows a change in
volume (as well as no change) has introduced new parameters and new allowed numerical
ranges of the parameters into the theory thereby increasing the flexibility of the theory to
match conditions of real fragmentation phenomena.
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Appendix A. The Friedlander similarity form for fragmentation with volume change

We consider the scale transformations of time and particle volume given by
t=r%@*+1) x=rx". (A1)

Substitution into the fragmentation equation (1.1) gives, after relabelling the variables, the
transformed equation

8 o0

En,(x, 1) = —Cox®n,(x,1) + Cq / v b(x /y)n,. (v, 1) dy (A.2)
where the transformed distribution is given by

ne(x, 1) = r*afrx, r=o( + 1o)]. (A.3)

Equation (A.2) is identical to (1.1), which is to say that (1.1) is invariant under the scale
transformation. The factor in the transformed distribution is arbitrary but has been chosen so
that thex-moment of the transformed distributioM,. ;, = f0°° x*n,(x, t)dx is equal to the
momentM; = f0°° x*n(x, t)dx of the original distribution. Thus, (A.3) is a transformation
that preserves the numerical value of thenoment. To confirm that the moment of

the transformed distribution is not only constant but equal to the moment of the original
distribution, we take the moment and obtain

M., = / x*np(x, 1) dx = / XM, [rx, 1t + to)] dx.
0 0
With y = rx we have
o0
M, = / yaly, r=(@t + 10)]dy = My (t + o) = M. (A.4)
0

If n(x,t) is a solution of the fragmentation equation the distributiptx, ) generated
by the scale transformation will generally be a different solution. However, there is the
possibility that there is a distribution that is unchanged by the transformation, i.e. is invariant
under the scale transformation. When it exists this distribution is the similarity solution of
the fragmentation equation and it has the same scale invariance as the equation.

To derive the form of the solution we have only to find the function form that is invariant
under the scale transformation, i®.(x,t) = n(x,t). If the transformed distribution is
invariant it is independent of. If n,(x,t) = r**n[rx, r(t + to)] is independent of
then

dn, (x, 1) (L4 w) 4 on(u, w) A on(u, w)

=0. (A5
dr ou (A-5)
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The general solution of (A.5) is

MxMﬁll (,U«)\Mx—1>
Ma—a M \ ua—1M,,
which may be confirmed by substitution into (A.5). We impose the normalization’s
wi-1 =1, u, = 1in (A.6) and obtain the similarity form (3.1).

One can see at this point a certain generality in the construction of the similarity form.
The only properties of the fragmentation equation that were used were that a moment
M, is conserved and that the equation is invariant under the scale transformation and
time translation. Nowhere was the linearity of the equation used or was it necessary
to say anything about the fragmentation kernel, except that certain regularity conditions
are understood. Thus, the above derivation applies as well to the quadratically nonlinear
Smoluchowski coagulation equation [17] when the coagulation terms are homogeneous in
the particle sizes.

n(x,t) = (A.6)

Appendix B. The solution for the reduced moments

The positive zerd. and the negative zerds, A,. .., A, are solutions of
bo b1 b,

_ St (B.1)
k+y+1 k+y+2 k+y+1+p
For A; given by (3.16) we obtain
Ay 1A 1ta - ALt (- Da
_ i (A +A— 1)/0()n(()‘2 + A - 1)/05)n cee (()‘-p + A —Da), (B 2)

2 (MO A+ D ). (v + A+ p)a),
where(a), = p(a+1)...(a+n—1) is the Pochhammer factorialy), = I'(a +n)/ ' (a),
andT is the gamma function. We may write (B.2) in terms of the gamma functions as

Ay 1Ar-1ta - - A1t (- D
= a—ln[F((/\l +A—=D/a+ml((h2+2r—D/a+n)...

T+ A =D /a+mT((y + M)/ ((y + 2+ D/a). ..

Ty +2+ p)/a)]

X[C((A1+ A =D /)T (A2 + A — D/a) . ..

T+ 2 =D /a)T((y + M)/ +m)T((y + A+ D /a+n)...

LTy +r+p)ja+n)]? (B.3)
Substitution of (B.3) into (3.16) yields (3.18) in the text which is
-1tk = Dyat, y, VB Tk +y + 1) /)T ((k +y + A +D/a)...

o T(k+y + 1+ p)/a)]

X[k +r1+ A2 =D /)T ((k+r2+Ar—1D/a)...

T+ 2, + 2 =D/t (B.4)
whereD,(«, y, A) is given by (3.19).

Appendix C. Representations of theG-function

We give here representations of tGefunction for small and large.
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C.1. Power series af = 0 and then — 0 limit

If 1/« is not an integer then the poles of the gamma functions are simple and summing
over the residues yields the sum af, series given by

+1,0 n7_,T(c)

G;p+1(“p? 0,¢cp;m) = X, Fy(L—ap; 1—cp; —1)

P n!’flr(ci — cHpila
+ » ! R 4e —ayl4c —c—)
j=1 07, (i —y —/a)— (/)" ” J P Ji »
(C.1)
where
a_)»l—)/—l lo—y—1 A —y —1 C_EE p
P o ) o y ey o P C{’C{’ ,a
and

pFp(ay; cpin) = Z (@a)n(@n ... (ap)n

n=0 (Cl)n(Cz)n - (Cp)nn!

is a confluent, generalized hypergeometric series. The notatiarj in (C.1) means that
the term withi = j is omitted from the product and the term with tjign compound ot,
is omitted from the argument gfF,,. For smally the leading terms are

-y —1
;ﬁ(”;O,R >:no(l—pn+---)+ﬂ1n1/‘”(l—an+---)+--- (C2)

G’ ;
p o o
wheremny, 1, 0, o are constants. Thus, according to (4.4),
lim ¢ (n) = Con”/* (C.3)

whenn = z*/8% and Cy is a constant which can be obtained from (C.1) and (4.4).

C.2. An integral representation and tlye— oo limit

It is shown in [15] that theG-function can be represented as
s10({rp—v—-1 _p
Gg,pﬂ (pa 0, P
. 1
S T(Oa—y =2/ (G2 —y =3)/@)...T((hp —y = 1= p)/a)

x/ / / duydus... du,
o Jo 0

Xu(lO\rny)/w)fl(l + ul)7((,\17;/71)/0;)u;(szy%)/a)fl(l + uz)f(()»gfyfl)/a) .

) u;()tpf}’*lfﬁ)/a)*l(l + Mp)f((kpfyfl)/a) expl—n(L+ u) (1 + us) . ..

o (Lt up)l (C.4)

From this representation one can see by inspection that the integrals are finite if we have
the following lower bounds on the zeros 4f,

M>y+2r>y+3,.., 4, >y+1+p. (C.5)
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The expansion ot?p+ l(n) in powers ofp~! can be obtained from (C.4). Following the
same steps given |n [15] for = 1 we obtain from (C.4) the limit

Jim d(n) ~ ﬁ n¥ TN exp(—n) (C.6)

where
P
==Y j—y—-1-). (C.7)
j=1

For p = 0 we see from the definition of th@-function thatGo 1(77) = exp(—n). According

to Luke [18], for p > 1 the expansions oG’“;ﬁ(n) in powers ofy~! are asymptotic

expansions. Thus, fgp > 1 (C.6) is the limit of an asymptotic expansion.
For example, from (C.4) fop = 1 we have

2o(M-y-1_1 \
G”( o ’Qa”)_““"%«M—y—am>

oo
X f Ao (P27 =2/ 711 4 gy) =y =D/ expl—n (1 4 w)].
0

We expand(1 + u)~(*1=7=D/9) in a power series at = 0, change to the variable = nu
and obtain

m—y—1 1 o 1
G%9 (;0,;77 =n ¢ 2 exp(—n)
{7 S PPy

/ dg £(a=y=2/e)— 1exp( §)<1_1<)”1_)/_:|'>§,7—1+...
o

1 —y—1\ _, _,
) e)
n! o n

Integrating term by term gives the series
rm—y—-1 1
20( ALY ) .
G12 (av Os &’ 77)
ey M—y—2 m—y-1 _
~ TRl eXp(—n)zFo( R (€8

where the blank entry in the argument means there is no Pochhammer factorial in the
denominator and in the denominator we used

M—y —2 M—y —2 M—y —2
F(l 4 —i—n):r‘(l Y )(1 Y )
o o o n

Since there are two Pochhammer factorials in the numerator and no Pochhammer factorial in
the denominator it is evident that the series diverges for,ddlt it converges asymptotically.

The leading terms for the asymptotic expansion o= 2 andi = 1 are shown in [15].

The complexity of the expansion increases very fasp ascreases.

Appendix D. The recursion equation for the reduced moments

Multiplying (4.9) by z¥ and integrating gives

(—k + Mg = O;[ — Mikta +/ dz z"/ b(z>w"“1¢>(w)dw} (D.1)
B 0 - w
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where we have used the boundary conditiefs'¢ (z)|.—o = 0, z¥*'¢(z)|.—.c = 0 and
Wi = f0°° 7z*¢(z) dz. Changing the way we do the double integration we obtain

/Do dz z"/oo b(z/w)w* ¢ (w) dw = /Oo dw(/w dz z"b(z/w))¢(w)dw. (D.2)
T;en with tzhe change of variable = w?r =z/w (\)/ve have

/ wdw( [ w dzz"b(z/w))«»(w)dw = f () Mira- (D.3)
With (D.2) andO(D.S) in E)D.l) we obtain i

(—k + M)y = ;(_ 1+/01rkb(r)dr),uk+a. (D.4)

With the definition ofA, given by (2.4), we see that (D.4) is the recursion equation (3.12)
derived in another way in the text.
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